import re
import traceback
import os
import numpy as np
import numpy.testing as nptest
from tesseract_robotics.tesseract_common import GeneralResourceLocator
from tesseract_robotics.tesseract_environment import Environment
from tesseract_robotics.tesseract_common import FilesystemPath, Isometry3d, Translation3d, Quaterniond, \
ManipulatorInfo, AnyPoly, AnyPoly_wrap_double
from tesseract_robotics.tesseract_command_language import CartesianWaypoint, WaypointPoly, \
MoveInstructionType_FREESPACE, MoveInstruction, InstructionPoly, StateWaypoint, StateWaypointPoly, \
CompositeInstruction, MoveInstructionPoly, CartesianWaypointPoly, ProfileDictionary, \
AnyPoly_as_CompositeInstruction, CompositeInstructionOrder_ORDERED, DEFAULT_PROFILE_KEY, \
AnyPoly_wrap_CompositeInstruction, DEFAULT_PROFILE_KEY, JointWaypoint, JointWaypointPoly, \
InstructionPoly_as_MoveInstructionPoly, WaypointPoly_as_StateWaypointPoly, \
MoveInstructionPoly_wrap_MoveInstruction, StateWaypointPoly_wrap_StateWaypoint, \
CartesianWaypointPoly_wrap_CartesianWaypoint, JointWaypointPoly_wrap_JointWaypoint
from tesseract_robotics.tesseract_task_composer import TaskComposerPluginFactory, PlanningTaskComposerProblemUPtr, \
TaskComposerDataStorage, TaskComposerInput, TaskComposerProblemUPtr, PlanningTaskComposerProblemUPtr_as_TaskComposerProblemUPtr
from tesseract_robotics_viewer import TesseractViewer
# This example demonstrates using the Tesseract Planning Task Composer to create a simple robot motion plan from
# an input request program. The composer is a high level interface for creating motion plans. It is designed to
# be used by users who do not want to deal with the details of the Tesseract Planning Library. The composer automatically
# runs a sequence of planning steps to generate an output plan with minimal configuration. "Profiles" are used to
# configure the planning steps. Profiles are a dictionary of key value pairs that are used to configure the planning
# steps. The various planners have default configurations that should work for most use cases. There are numerous
# configurations available for the task composer that execute different sequences of planning steps. This example
# demonstrates using the "freespace" planner, which is for moving the robot to a desired pose in free space while
# avoiding collisions. The freespace planner first uses OMPL to find a collision free path, and then uses TrajOpt
# to refine the path. Finally, the TimeOptimalTrajectoryGeneration time parametrization algorithm is used to generate
# timestamps for the trajectory.
# The task composer requires a configuration YAML file to be passed in. A default configuration file is provided
# in the Tesseract Planning Library. This configuration file can be copied and modified to suit the user's needs.
# An environment is initialized using URDF and SRDF files. These files need to be configured for the scene, and
# to use the correct collision and kinematics plugins. See the collision and kinematics examples for more details on
# how to do this.
# This example uses the GeneralResourceLocator to find resources on the file system. The GeneralResourceLocator
# uses the TESSERACT_RESOURCE_PATH environmental variable.
#
# TESSERACT_RESOURCE_PATH must be set to the directory containing the `tesseract_support` package. This can be done
# by running:
#
# git clone https://github.com/tesseract-robotics/tesseract.git
# export TESSERACT_RESOURCE_PATH="$(pwd)/tesseract/"
#
# or on Windows
#
# git clone https://github.com/tesseract-robotics/tesseract.git
# set TESSERACT_RESOURCE_PATH=%cd%\tesseract\
# The environmental variable TESSERACT_TASK_COMPOSER_CONFIG_FILE must be set to the location of the configuration file.
# This can be done by running:
#
# git clone https://github.com/tesseract-robotics/tesseract-planning.git
# export TESSERACT_TASK_COMPOSER_CONFIG_FILE="$(pwd)/tesseract_planning/tesseract_task_composer/config/task_composer_plugins_no_trajopt_ifopt.yaml"
#
# or on Windows
#
# git clone https://github.com/tesseract-robotics/tesseract-planning.git
# set TESSERACT_TASK_COMPOSER_CONFIG_FILE=%cd%\tesseract_planning\tesseract_task_composer\config\task_composer_plugins_no_trajopt_ifopt.yaml
#
# This file can be distributed with the application, and modified as needed.
OMPL_DEFAULT_NAMESPACE = "OMPLMotionPlannerTask"
TRAJOPT_DEFAULT_NAMESPACE = "TrajOptMotionPlannerTask"
task_composer_filename = os.environ["TESSERACT_TASK_COMPOSER_CONFIG_FILE"]
# Initialize the resource locator and environment
locator = GeneralResourceLocator()
abb_irb2400_urdf_package_url = "package://tesseract_support/urdf/abb_irb2400.urdf"
abb_irb2400_srdf_package_url = "package://tesseract_support/urdf/abb_irb2400.srdf"
abb_irb2400_urdf_fname = FilesystemPath(locator.locateResource(abb_irb2400_urdf_package_url).getFilePath())
abb_irb2400_srdf_fname = FilesystemPath(locator.locateResource(abb_irb2400_srdf_package_url).getFilePath())
t_env = Environment()
# locator_fn must be kept alive by maintaining a reference
assert t_env.init(abb_irb2400_urdf_fname, abb_irb2400_srdf_fname, locator)
# Fill in the manipulator information. This is used to find the kinematic chain for the manipulator. This must
# match the SRDF, although the exact tcp_frame can differ if a tool is used.
manip_info = ManipulatorInfo()
manip_info.tcp_frame = "tool0"
manip_info.manipulator = "manipulator"
manip_info.working_frame = "base_link"
# Create a viewer and set the environment so the results can be displayed later
viewer = TesseractViewer()
viewer.update_environment(t_env, [0,0,0])
# Set the initial state of the robot
joint_names = ["joint_%d" % (i+1) for i in range(6)]
viewer.update_joint_positions(joint_names, np.array([1,-.2,.01,.3,-.5,1]))
# Start the viewer
viewer.start_serve_background()
# Set the initial state of the robot
t_env.setState(joint_names, np.ones(6)*0.1)
# Create the input command program waypoints
wp1 = CartesianWaypoint(Isometry3d.Identity() * Translation3d(0.8,-0.3,1.455) * Quaterniond(0.70710678,0,0.70710678,0))
wp2 = CartesianWaypoint(Isometry3d.Identity() * Translation3d(0.8,0.3,1.455) * Quaterniond(0.70710678,0,0.70710678,0))
wp3 = CartesianWaypoint(Isometry3d.Identity() * Translation3d(0.8,0.5,1.455) * Quaterniond(0.70710678,0,0.70710678,0))
# Create the input command program instructions. Note the use of explicit construction of the CartesianWaypointPoly
# using the *_wrap_CartesianWaypoint functions. This is required because the Python bindings do not support implicit
# conversion from the CartesianWaypoint to the CartesianWaypointPoly.
start_instruction = MoveInstruction(CartesianWaypointPoly_wrap_CartesianWaypoint(wp1), MoveInstructionType_FREESPACE, "DEFAULT")
plan_f1 = MoveInstruction(CartesianWaypointPoly_wrap_CartesianWaypoint(wp2), MoveInstructionType_FREESPACE, "DEFAULT")
plan_f2 = MoveInstruction(CartesianWaypointPoly_wrap_CartesianWaypoint(wp3), MoveInstructionType_FREESPACE, "DEFAULT")
# Create the input command program. Note the use of *_wrap_MoveInstruction functions. This is required because the
# Python bindings do not support implicit conversion from the MoveInstruction to the MoveInstructionPoly.
program = CompositeInstruction("DEFAULT")
program.setManipulatorInfo(manip_info)
program.appendMoveInstruction(MoveInstructionPoly_wrap_MoveInstruction(start_instruction))
program.appendMoveInstruction(MoveInstructionPoly_wrap_MoveInstruction(plan_f1))
# program.appendMoveInstruction(MoveInstructionPoly(plan_f2))
# Create the task composer plugin factory and load the plugins
config_path = FilesystemPath(task_composer_filename)
factory = TaskComposerPluginFactory(config_path)
# Create the task composer node. In this case the FreespacePipeline is used. Many other are available.
task = factory.createTaskComposerNode("FreespacePipeline")
# Get the input and output keys for the task
input_key = task.getInputKeys()[0]
output_key = task.getOutputKeys()[0]
# Create a profile dictionary. Profiles can be customized by adding to this dictionary and setting the profiles
# in the instructions.
profiles = ProfileDictionary()
# Create an AnyPoly containing the program. This explicit step is required because the Python bindings do not
# support implicit conversion from the CompositeInstruction to the AnyPoly.
program_anypoly = AnyPoly_wrap_CompositeInstruction(program)
# Create the task data storage and set the data
task_data = TaskComposerDataStorage()
task_data.setData(input_key, program_anypoly)
# Create the task problem and input
task_planning_problem = PlanningTaskComposerProblemUPtr.make_unique(t_env, task_data, profiles)
task_problem = PlanningTaskComposerProblemUPtr_as_TaskComposerProblemUPtr(task_planning_problem)
task_input = TaskComposerInput(task_problem)
# Create an executor to run the task
task_executor = factory.createTaskComposerExecutor("TaskflowExecutor")
# Run the task and wait for completion
future = task_executor.run(task.get(), task_input)
future.wait()
# Retrieve the output, converting the AnyPoly back to a CompositeInstruction
results = AnyPoly_as_CompositeInstruction(task_input.data_storage.getData(output_key))
# Display the output
# Print out the resulting waypoints
for instr in results:
assert instr.isMoveInstruction()
move_instr1 = InstructionPoly_as_MoveInstructionPoly(instr)
wp1 = move_instr1.getWaypoint()
assert wp1.isStateWaypoint()
wp = WaypointPoly_as_StateWaypointPoly(wp1)
print(f"Joint Positions: {wp.getPosition().flatten()} time: {wp.getTime()}")
# Update the viewer with the results to animate the trajectory
# Open web browser to http://localhost:8000 to view the results
viewer.update_trajectory(results)
viewer.plot_trajectory(results, manip_info)
input("press enter to exit")