Readme

Python

PyPI

Platform | CI Status ———————|:——— Linux (Focal) | Build Status Windows | Build Status Wheels | Build Status

Github Issues

license - apache 2.0 license - bsd 2 clause

support level: consortium

tesseract_python contains Python wrappers for the Tesseract robot motion planner, generated using SWIG. These wrappers contain most of the Tesseract functionality, including scene loading and management (URDF,SRDF, meshes), collision checking (Bullet, FCL), kinematics (KDL, OPW, UR), planning (OMPL, Descartes, TrajOpt), and visualization (tesseract_viewer_python)

Standalone packages are provided on PyPi (pip install) for Windows and Linux, containing all the native dependencies for Python 3.7+.

The Tesseract Python package is developed and maintained by Wason Technology, LLC.

Note that these are low level wrappers. The lifecycle of objects follow the underlying C++ objects, meaning that the target of C++ references may be destroyed before the reference, leading to a memory error. These wrappers do not attempt to change the memory lifecycle of the underlying C++ objects.

Documentation

See https://tesseract-robotics.github.io/tesseract_python/ for documentation.

Installation

Standalone packages are provided on PyPi (pip install) for Windows and Linux, containing Tesseract, Tesseract Planning, andall the native dependencies for Python 3.7+. These packages have been tested on Windows 10, Ubuntu 20.04, and Ubuntu 22.04, but should work on any relatively recent x64 Windows or Linux operating system. Packages are available for Python 3.7 - 3.11.

To install on Windows:

python -m pip install tesseract-robotics tesseract-robotics-viewer

To install on Ubuntu 20.04 and Ubuntu 22.04:

sudo apt install python3-pip python3-numpy
python3 -m pip install -U pip
python3 -m pip install --user  tesseract_robotics tesseract_robotics_viewer

Example

ABB Tesseract viewer plan and viewer example:

Install tesseract_robotics and tesseract_robotics_viewer as shown in Installation section.

Clone tesseract, tesseract_planning, and tesseract_python repositories to retrieve example assets. This is not necessary if the example assets are not used.

git clone --depth=1 https://github.com/tesseract-robotics/tesseract.git
git clone --depth=1 https://github.com/tesseract-robotics/tesseract_planning.git
git clone --depth=1 https://github.com/tesseract-robotics/tesseract_python.git

Set the TESSERACT_RESOURCE_PATH and TESSERACT_TASK_COMPOSER_CONFIG_FILE environmental variables so the example can find required resources:

Linux:

export TESSERACT_RESOURCE_PATH=`pwd`/tesseract
export TESSERACT_TASK_COMPOSER_CONFIG_FILE=`pwd`/tesseract_planning/tesseract_task_composer/config/task_composer_plugins_no_trajopt_ifopt.yaml

Windows:

set TESSERACT_RESOURCE_PATH=%CD%/tesseract
set TESSERACT_TASK_COMPOSER_CONFIG_FILE=%CD%/tesseract_planning/tesseract_task_composer/config/task_composer_plugins_no_trajopt_ifopt.yaml

Now run the example!

Windows:

cd tesseract_python\examples
python tesseract_planning_example_composer.py

Linux:

cd tesseract_python/examples
python3 tesseract_planning_example_composer.py

And point a modern browser to http://localhost:8000 to see the animation!

Example source:

import re
import traceback
import os
import numpy as np
import numpy.testing as nptest

from tesseract_robotics.tesseract_common import GeneralResourceLocator
from tesseract_robotics.tesseract_environment import Environment
from tesseract_robotics.tesseract_common import FilesystemPath, Isometry3d, Translation3d, Quaterniond, \
    ManipulatorInfo, AnyPoly, AnyPoly_wrap_double
from tesseract_robotics.tesseract_command_language import CartesianWaypoint, WaypointPoly, \
    MoveInstructionType_FREESPACE, MoveInstruction, InstructionPoly, StateWaypoint, StateWaypointPoly, \
    CompositeInstruction, MoveInstructionPoly, CartesianWaypointPoly, ProfileDictionary, \
        AnyPoly_as_CompositeInstruction, CompositeInstructionOrder_ORDERED, DEFAULT_PROFILE_KEY, \
        AnyPoly_wrap_CompositeInstruction, DEFAULT_PROFILE_KEY, JointWaypoint, JointWaypointPoly, \
        InstructionPoly_as_MoveInstructionPoly, WaypointPoly_as_StateWaypointPoly, \
        MoveInstructionPoly_wrap_MoveInstruction, StateWaypointPoly_wrap_StateWaypoint, \
        CartesianWaypointPoly_wrap_CartesianWaypoint, JointWaypointPoly_wrap_JointWaypoint

from tesseract_robotics.tesseract_task_composer import TaskComposerPluginFactory, PlanningTaskComposerProblemUPtr, \
    TaskComposerDataStorage, TaskComposerInput, TaskComposerProblemUPtr, PlanningTaskComposerProblemUPtr_as_TaskComposerProblemUPtr

from tesseract_robotics_viewer import TesseractViewer


OMPL_DEFAULT_NAMESPACE = "OMPLMotionPlannerTask"
TRAJOPT_DEFAULT_NAMESPACE = "TrajOptMotionPlannerTask"

task_composer_filename = os.environ["TESSERACT_TASK_COMPOSER_CONFIG_FILE"]

locator = GeneralResourceLocator()
abb_irb2400_urdf_package_url = "package://tesseract_support/urdf/abb_irb2400.urdf"
abb_irb2400_srdf_package_url = "package://tesseract_support/urdf/abb_irb2400.srdf"
abb_irb2400_urdf_fname = FilesystemPath(locator.locateResource(abb_irb2400_urdf_package_url).getFilePath())
abb_irb2400_srdf_fname = FilesystemPath(locator.locateResource(abb_irb2400_srdf_package_url).getFilePath())

t_env = Environment()

assert t_env.init(abb_irb2400_urdf_fname, abb_irb2400_srdf_fname, locator)

manip_info = ManipulatorInfo()
manip_info.tcp_frame = "tool0"
manip_info.manipulator = "manipulator"
manip_info.working_frame = "base_link"

viewer = TesseractViewer()
viewer.update_environment(t_env, [0,0,0])

joint_names = ["joint_%d" % (i+1) for i in range(6)]
viewer.update_joint_positions(joint_names, np.array([1,-.2,.01,.3,-.5,1]))

viewer.start_serve_background()

t_env.setState(joint_names, np.ones(6)*0.1)

wp1 = CartesianWaypoint(Isometry3d.Identity() * Translation3d(0.8,-0.3,1.455) * Quaterniond(0.70710678,0,0.70710678,0))
wp2 = CartesianWaypoint(Isometry3d.Identity() * Translation3d(0.8,0.3,1.455) * Quaterniond(0.70710678,0,0.70710678,0))
wp3 = CartesianWaypoint(Isometry3d.Identity() * Translation3d(0.8,0.5,1.455) * Quaterniond(0.70710678,0,0.70710678,0))

start_instruction = MoveInstruction(CartesianWaypointPoly_wrap_CartesianWaypoint(wp1), MoveInstructionType_FREESPACE, "DEFAULT")
plan_f1 = MoveInstruction(CartesianWaypointPoly_wrap_CartesianWaypoint(wp2), MoveInstructionType_FREESPACE, "DEFAULT")
plan_f2 = MoveInstruction(CartesianWaypointPoly_wrap_CartesianWaypoint(wp3), MoveInstructionType_FREESPACE, "DEFAULT")

program = CompositeInstruction("DEFAULT")
program.setManipulatorInfo(manip_info)
program.appendMoveInstruction(MoveInstructionPoly_wrap_MoveInstruction(start_instruction))
program.appendMoveInstruction(MoveInstructionPoly_wrap_MoveInstruction(plan_f1))

config_path = FilesystemPath(task_composer_filename)
factory = TaskComposerPluginFactory(config_path)

task = factory.createTaskComposerNode("FreespacePipeline")

input_key = task.getInputKeys()[0]
output_key = task.getOutputKeys()[0]

profiles = ProfileDictionary()

program_anypoly = AnyPoly_wrap_CompositeInstruction(program)

task_data = TaskComposerDataStorage()
task_data.setData(input_key, program_anypoly)

task_planning_problem = PlanningTaskComposerProblemUPtr.make_unique(t_env, task_data, profiles)
task_problem = PlanningTaskComposerProblemUPtr_as_TaskComposerProblemUPtr(task_planning_problem)
task_input = TaskComposerInput(task_problem)

task_executor = factory.createTaskComposerExecutor("TaskflowExecutor")

future = task_executor.run(task.get(), task_input)
future.wait()

results = AnyPoly_as_CompositeInstruction(task_input.data_storage.getData(output_key))

for instr in results:
    assert instr.isMoveInstruction()
    move_instr1 = InstructionPoly_as_MoveInstructionPoly(instr)
    wp1 = move_instr1.getWaypoint()
    assert wp1.isStateWaypoint()
    wp = WaypointPoly_as_StateWaypointPoly(wp1)
    print(f"Joint Positions: {wp.getPosition().flatten()} time: {wp.getTime()}")

viewer.update_trajectory(results)
viewer.plot_trajectory(results, manip_info)

input("press enter to exit")

Tesseract Python Supported Packages

  • tesseract_collision – This package contains privides a common interface for collision checking prividing several implementation of a Bullet collision library and FCL collision library. It includes both continuous and discrete collision checking for convex-convex, convex-concave and concave-concave shapes.

  • tesseract_common – This package contains common functionality needed by the majority of the packages.

  • tesseract_environment – This package contains the Tesseract Environment which provides functionality to add,remove,move and modify links and joint. It also manages adding object to the contact managers and provides the ability.

  • tesseract_geometry – This package contains geometry types used by Tesseract including primitive shapes, mesh, convex hull mesh, octomap and signed distance field.

  • tesseract_kinematics – This package contains a common interface for Forward and Inverse kinematics for Chain, Tree’s and Graphs including implementation using KDL and OPW Kinematics.

  • tesseract_scene_graph – This package contains the scene graph which is the data structure used to manage the connectivity of objects in the environment. It inherits from boost graph and provides addition functionality for adding,removing and modifying Links and Joints along with search implementation.

  • tesseract_support – This package contains support data used for unit tests and examples throughout Tesseract.

  • tesseract_urdf - This package contains a custom urdf parser supporting addition shapes and features currently not supported by urdfdom.

  • tesseract_visualization – This package contains visualization utilities and libraries.

  • tesseract_command_language - This is a generic programing language used as input for motion and process planning. It is very similar to how you currently program a robot on an industrial teach pendant.

  • tesseract_motion_planners – This package contains a common interface for Planners and includes implementation for OMPL, TrajOpt, TrajOpt IFOPT and Descartes.

  • tesseract_task_composer – This package contains a common interface for task pipelines and includes implementation for a wide variaty of process found industrial automation like painting, griding, welding, pick and place and more.

  • tesseract_time_parameterization – This package contains a time parameterization algorithms and includes iterative spline.

Documentation

Build Instructions

Building the tesseract_python package is complicated and not recommended for novice users. See the wheels.yml workflow for details on how to build the packages and all dependencies.